Are Practical Electric and Hybrid Airplanes Just Around the Corner?

by Ron Gremban, CalCars Technical Lead, 4/24/2009

Copyright 2009 by ForSites Corp.

Permission to distribute without change and including this notice is hereby granted.

1. Change of Title and Focus

- 1.1. Aviation Green Prize (AGP) rules have been continuing to change.
 - 1.1.1. The latest version arrived 2 days ago.
 - 1.1.2. The conversion factor changed from 50 kWh/gallon to 33.7 kWh/gal the average *net* [value used in Europe] energy content of gasoline making electricity's mpge less advantageous than before.
 - 1.1.2.1. Even 36.4 kWh/gal, the average *gross* [value usually used in the U.S., including by the DOE] content, would be more helpful for electrics
 - 1.1.2.1.1. The difference is the vaporization energy of the exhaust water
 - 1.1.3. On the other hand, the race was delayed from Sept 2010 to June 2011. Better batteries will be available, making electric *range* easier to achieve.
 - 1.1.4. The current race formula -1/(1/mpge + 1/mph) instead of pure speed is strongly focused toward racing at just above the minimum 100 mph and winning on mpge, because drag increases as the cube of speed
 - 1.1.4.1. Though, for any given airframe, not true below 130% of best L/D, this is still true when trading off all factors when designing an airframe for speed and efficiency
 - 1.1.4.2. The winning airframe will therefore be designed for best mpge at just above 100 mph, meaning best L/D will be between 76 and 100 mph,
 - 1.1.4.2.1. Leading to glider-like long-wing designs
 - 1.1.4.2.2. Despite the advantage of higher speeds in helping convince travelers to fly an airplane instead of driving a car
 - 1.1.5. The airplanes I modeled and intended to propose, though quiet, fuel efficient, and low carbon, will no longer meet the AGP's minimum mpge.
- 1.2. Beyond the AGP and its rules, there are good reasons for powering light airplanes electrically, once possible.
 - 1.2.1. Cost
 - 1.2.1.1. Batteries are still very expensive, but no more so than aircraft engines!
 - 1.2.1.2. Electricity is a much cheaper fuel than avgas, especially once superhigh oil prices return.
 - 1.2.2. Noise is becoming a major problem, threatening to limit general aviation, especially at airports serving suburbs and towns.
 - 1.2.2.1. Since aircraft engines cruise and climb at 65-100% of full power, quiet is more difficult to achieve.
 - 1.2.2.1.1. Auto engines are quieter due to both lower power output 99% of the time, and bigger, heavier, more efficiency-robbing mufflers.
 - 1.2.3. Aviation piston engines have so far been exempt from smog regulations, but:
 - 1.2.3.1. Since regulation has now made new automobile engines 200 times cleaner, agencies need to clean up more and more other sources to continue cleaning the air

- 1.2.3.2. 100LL is about to go, as light aircraft add measurably to airborne lead near busy general aviation airports.
- 1.2.3.3. Piston aircraft still emit particulates, hydrocarbons, oxides of nitrogen, etc, at levels hundreds of times per mile that of new cars
 - 1.2.3.3.1. At minimum, catalytic converters will be needed to help clean up aircraft piston engines how well will they work at high altitude?
 - 1.2.3.3.2. Diesel engines are even harder to clean up than gasoline engines.

1.2.4. Battery electric airplanes across the U.S. will already be lower carbon, because they are 2-3 times as efficient at using that energy as a piston airplane.

- 1.2.4.1. Though total CO2 emissions per energy content is higher now for U.S.-average electricity than for gasoline, efficiency rules:
 - 1.2.4.1.1. Electrics around 80% efficient (grid to shaft) vs.
 - 1.2.4.1.2. 25-30% for gasoline (tank to shaft), and
 - 1.2.4.1.3. Around 40% for Diesel (tank to shaft)
- 1.2.4.2. The electric grid already has far more extra capacity, especially at night, than needed for any conceivable penetration rate of electric airplanes enough for at least 85% of all *250 million* cars to be electric.
- 1.2.4.3. In contrast, for the foreseeable future, aviation biofuel use will merely slow down efforts to reduce automotive petroleum consumption
 - 1.2.4.3.1. Low-carbon biofuel production will only exceed ground transportation requirements after near complete automotive electrification, because
 - 1.2.4.3.2. Cellulosic and algae technology are not yet commercialized
 - 1.2.4.3.3. Sustainable non-food feedstock limits production to 33% of existing automotive consumption,
 - 1.2.4.3.4. Enormous investments will be required to build sufficient plant capacity, and
 - 1.2.4.3.5. Plants must be near feedstocks because transport is too expensive.
- 1.2.4.4. In California, electricity is already lower-carbon than gasoline.
- 1.2.4.5. Many states, including CA, already have increasing renewable energy portfolio standards, and the U.S. will no doubt follow soon.
- 1.2.4.6. As conventional oil supplies dwindle and unconventional supplies like tar sands are increasingly tapped, the carbon emitted to make gasoline will keep increasing.
- 1.2.4.7. Much of the energy required for light electric airplanes could be generated by covering airport hangars with solar panels, while also improving electric utility load balancing and efficiency.

1.2.5. Reliability

- 1.2.5.1. Though not yet proven, electric propulsion is potentially much more reliable than piston engines.
- 1.2.5.2. Piston engine failures cause many fatal crashes each year.

1.3. What minimum performance is needed for a practical electric airplane?

- 1.3.1. My guesses as a GA pilot, former owner of an old (1966) C-172, and aviation enthusiast
 - 1.3.1.1. These are projected minimums for some (hopefully many) pilots

- 1.3.1.1.1. Not what's needed to compete with piston aircraft before serious consideration of fuel costs and/or environmental factors
- 1.3.1.1.2. Endurance is considered to be bladder-limited to 3 hours anyway.
- 1.3.1.1.3. Cruise speed and endurance are rated at sea level (SL)
 - 1.3.1.1.3.1.Endurance rated at the same cruise speed
 - 1.3.1.1.3.2. Actual trips will require a climb to altitude, but also a descent and higher-speed, more-efficient cruising; a first-level assumption is that these things pretty much cancel out.
- 1.3.1.1.4. Fuel cost savings will be noted for specific designs.
- 1.3.1.2. Refueling will depend upon
 - 1.3.1.2.1. As-yet-nonexistent charge stations, or
 - 1.3.1.2.2. A high-power electrical outlet available by pre-arrangement.
 - 1.3.1.2.3. Required power levels will be noted for specific designs.

1.3.2. Recreation

- 1.3.2.1. Local flying near C-150 or LSA performance
 - 1.3.2.1.1. 1-2-place, 200 lb/person (200-400 lb) payload (no baggage)
 - 1.3.2.1.2. 100 mph/87 kt cruise, 8k ft ceiling
 - 1.3.2.1.3. 1.5 hours endurance at cruise + VFR reserve
 - 1.3.2.1.4. Overnight refueling (1-hour maximum for rentals)
- 1.3.2.2. Day trips near C-172 or LSA performance
 - 1.3.2.2.1. 2-4-place, 225 lb/person (450-900 lb) payload (minimal baggage)
 - 1.3.2.2.2. 100+ kt cruise, 10k ft ceiling (12k+ in the West)
 - 1.3.2.2.3. 2-3 hours endurance (230-345 miles) + VFR reserve
 - 1.3.2.2.4. 4 hours maximum to refuel
- 1.3.2.3. Long distance cross-country flying C-172++
 - 1.3.2.3.1. 2-4-place, 250 lb/person payload (500-1000 lb)
 - 1.3.2.3.2. 100-200 kt cruise, 12k+ ceiling
 - 1.3.2.3.3. 2.5-3 hours endurance (288-690 miles) + VFR or IFR reserve
 - 1.3.2.3.4. 1 hour maximum to refuel (time for a meal)

1.3.3. Business travel

- 1.3.3.1. Single-person travel, a stop after each leg: traveling salesman, small business owner, etc. like recreational day trips except
 - 1.3.3.1.1. 1-place, 250-500 lb payload (may include equipment)
 - 1.3.3.1.2. 1-2 hours maximum refuel time due to multiple legs
 - 1.3.3.1.3. More speed is highly desirable, as time is money
- 1.3.3.2. Carrying clients or associates, a stop after each leg like single-person business except
 - 1.3.3.2.1. 3-4-place, 250 lb/person (750-1000 lb) payload
- 1.3.3.3. Long distance cross-country flying like recreational except
 - 1.3.3.3.1. IFR reserve
 - 1.3.3.3.2. 150+ kt cruise

1.3.4. Commuting

1.3.4.1. 1-2-place, 225 lb/person payload (225-450 lb), 100-150 kt cruise

- 1.3.4.2. 2-2.5 hours (more is unreasonable) at cruise (230-375 mi) + IFR reserve
- 1.3.4.3. 6-8 hours to refuel during work

1.4. What can hybridizing an airplane accomplish?

- 1.4.1. Suggested/modeled hybrid
 - 1.4.1.1. Parallel, powered by the electric motor and/or the engine
 - 1.4.1.1.1. Engine is used for cruise and for some climb
 - 1.4.1.2. Motor always turns, attached directly to propeller or via PSRU
 - 1.4.1.3. Engine, attached via a centrifugal clutch, can start and stop
 - 1.4.1.4. Enough electric energy to climb to e.g. 10,000 ft.
 - 1.4.1.4.1. Ground charging enables some displacement of liquid fuel
 - 1.4.1.5. A reversing propeller to capture some energy while slowing down during rapid descents
- 1.4.2. Quiet airport operations, unless full power is needed for a short-field or high altitude takeoff
- 1.4.3. Smaller, lighter, efficient Diesel engine
 - 1.4.3.1. Sized only for maximum cruise power
 - 1.4.3.1.1. Especially with DeltaHawk Diesel engines, which are rated to cruise at 100% power
 - 1.4.3.2. Higher efficiency means less weight in fuel for a given range
 - 1.4.3.3. Motor and battery are still heavier than engine and fuel weight savings
- 1.4.4. Some electric energy is always held in reserve, in case of engine failure
 - 1.4.4.1. For long life, most batteries should not normally be discharged beyond 80% anyway.
 - 1.4.4.2. Engine failure is the cause of many fatal crashes, especially during takeoffs
 - 1.4.4.3. Electric motors are much more reliable, and dual-power is more reliable yet

2. My modeling of electric and hybrid airplanes that are possible with today's and near-future technology (live spreadsheet to follow)

- 2.1. For both, I started with the fastest 4-place piston kit airframes
 - 2.1.1. Kit airplanes get registered as amateur-built experimental, making them both modifiable and useful (can be flown most anywhere).
 - 2.1.2. With engine size effectively limited to 350 hp, they have to be very efficient to fly at 200-250 kt.
 - 2.1.3. Maximum L/D, though much lower than for smaller, slower glider-like airplanes, occurs at a high enough speed (e.g. 100 kt) to make the desirable 100-200 kt speeds especially efficient.
 - 2.1.4. To get a 2-place airplane with useful range using today's batteries, 2 places and their related payload can be sacrificed.
 - 2.1.5. As batteries improve, the airframe will remain near optimum for increasing cruise speed, range, and/or payload.