PHEVs: The Technical Side

PG&E's Pacific Energy Center February 23, 2006

Ron Gremban, Technical Lead The California Cars Initiative rgremban@calcars.org

Background: Gasoline Vehicles

- Gasoline (Otto cycle) vehicles:
 - Emit 8.9kg CO₂/gallon
 - Well-to-wheels efficiency: 10-13%

Background: Diesel Vehicles

- Diesel vehicles:
 - Emit 10.2kg CO₂/gallon (14% more than gas)
 - Diesel fuel weighs 10% more/gallon than gas
 - De-rate diesel MPG by 10% for true economy
 - Well-to-wheels efficiency: 13-17%
 - No known way to meet PZEV/future emissions levels

Background: HEV Efficiency Improvements

- Strong hybrids (Atkinson/Miller cycle):
 - Well-to-wheels efficiency: 15-26%
 - Atkinson/Miller greatly reduces low-power pumping losses
 - Regenerative braking recaptures up to 50%

Further HEV Efficiency Notes

- Vehicle weight mainly affects city driving
- Aerodynamics affects highway
- City vs. Highway
 - Gasoline (Otto): Much worse city
 - Diesel: Slightly worse city
 - HEV: Better city; acceleration energy recovered

PHEVs Replace Liquid Fuel with Electricity

- Most normal daily driving can be electric
- Emissions:
 - Electricity increasingly "green"
 - Night-time charging = highest wind production
 - 50% source-to-wheels v. 12-20% max for H₂
 - Sulfur and other emissions are capped
 - Carbon caps pending in East, considered in CA
- Well-to-wheels fossil fuel efficiency: 18-44%
 - HEV: 17-26%; Otto cycle: 10-13%; H₂: 13-23%

Equivalent to \$0.50-1.00/gallon

Greenhouse Gases: EV vs. Gasoline

Gasoline Vehicle CO₂

- 500 grams/mile @18mpg
- Strong HEVs: 250 grams/mile @ 35 mpg
- Gas will get dirtier

Electric Propulsion CO₂

- 1600 grams/kWhr =190 grams/mile
 - Approx. US average
- Worst states: 265 g/m

EPRI projections

2010: 500 g/kWhr = **59 g/mile**

2050: 375 g/kWhr = **44 g/mile**

PHEV Efficiency Improvements Over HEV

- Electricity used in place of most liquid fuel
- Increased regenerative braking
- Increased engine downsizing (strong PHEVs)
 - Engine only handles max steady-state load
 - ½ the size of existing HEV engines

PRIUS+ Performance

Project	Battery Manuf.	Battery Model	Chem -istry	Eff Ah	EV mi	Mix mi*	Added lb.	In- range Mpg*	Orig Mpg	City HEV Mpg	Comments
World's 1 st	BB Battery	EVP20 -12	Lead- acid	12	10	20	300**	80	45	-10% due to extra weight**	OEM battery not removed; hilly Marin terrain
EDrive	Valence	U1- 12XP	Li-ion	36	30	60	200	100	50	Unchanged due to lower impedence	Flat Los Angeles driving
Electro Energy	Electro Energy	N/A	NiMH	30	24	48	250	90	45	Unchanged due to lower impedence	Project nearly complete
Another Li-ion	Enax	N/A	Li-ion	33	27	54	100	90	45	Increased due to even lower impedence	Anticipated

^{*} Mixed city & highway driving (also uses around 130 Watt-hr/mi electricity)

^{**} OEM battery pack unused but not removed, adding ~75 lb

PRIUS+: Demonstrated PHEV Operation

- With minor modifications, current HEVs can become effective PHEVs
 - Not optimized
- No new technology required for practical PHEVs
- Current batteries can do the job
 - Electro Energy PRIUS+: capable NiMH pack
 - EDrive/Hymotion: capable Li-ion packs

A Prius' Real PHEV Capabilities

- EV operation at all speeds
- Sufficient EV power for most driving needs
 - 67 HP
- Other strong hybrids have similar potential capabilities

PHEV Batteries

- NiMH used in current HEVs, EVs
 - Low-failure, long life, practical for high energy
- Li-ion announced for next-gen hybrids
 - 2x specific energy of NiMH
 - Existing solutions for Li-ion problems
- More technologies on the horizon

What's Needed Now

- Battery qualification/incorporation by OEMs
- Risk to warrant battery life in first PHEVs
 - Nearly zero real-world PHEV experience
- Mass production of PHEVs
- Cost-savings of high-volume production and refinement

PHEV Energy Requirements

- Electric generation capacity
 - 2004 average US capacity: 938 gW
 - Average unused: 54% = 505 gW (higher at night)
 - Average unused capacity can simultaneously charge 337 million PHEVs
- If all ground vehicles were suddenly PHEVs
 - Total ground transport oil savings: 78%
 - Added generation requirements: 13%
 - 10x 2004 wind production: 142 tWh/year
 - 29% of the above PHEV requirements

Background: Ethanol and Biodiesel

- Upside:
 - "Flex-fuel" vehicles cost only ~\$150 extra to manufacture
 - Retrofitting is difficult
 - Biodiesel can be run in existing diesel vehicles
- Downside:
 - Fuel production competes with food production and rainforests for land
 - Barely higher energy output than input

Background: Ethanol and Biodiesel

- Cellulosic ethanol
 - Farm and urban plant wastes
 - Carbon neutral!
 - Enough for up to 30% of ground transport requirements before competing with food/forest land
- Thermal depolymerization biodiesel
 - Far less raw material available than for cellulosic
 E2

Cellulosic Ethanol Plus PHEVs

- US imports 60% of oil; 70% for ground transport
 - If all vehicles were HEVs:
 - 23% total oil savings
 - Flex-fuel: (cellulosic ethanol)
 - 21% total oil savings
 - PHEVs:
 - 55% total oil savings
 - Ground transportation CO₂ by 61% (73% by 2010)
 - Flex-fuel PHEVs:
 - 67% total oil savings 97% of ground transport oil
 - Ground transportation CO₂ cut by 81% (93% by 2010)

An All-Out Effort

- In 2-5 years, all new vehicles could be flex-fuel
- 12-20 years: most existing vehicles would be flexfuel, for 30% ground-trans oil and CO₂ reductions
- 10-15 years: all new vehicles could be flex-fuel PHEVs
- 20-30 years: most existing vehicles would then be flex-fuel PHEVs, for 97% ground-trans oil and 93% CO₂ reductions

PHEVs: The Technical Side

Check My Sources!

This presentation, notes, and others are available at www.calcars.org/downloads.html

