Are Practical Electric and Hybrid Airplanes Just Around the Corner?
(post-presentation slides; more detail in accompanying outline)

Presentation for 3rd Annual Electric Aircraft Symposium
San Carlos, CA
April 24, 2009

Ron Gremban, Technical Lead
The California Cars Initiative
rgremban@calcars.org
www.calcars.org
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

There are good reasons for electric airplanes ASAP

- **Cost**
 - At the shaft, electricity is less than 1/5 the cost avgas
 - Though batteries are hugely expensive, so are the aircraft engines they can replace

- **Noise – an increasing problem at GA airports**

- **Aircraft engines pollute**
 - Aircraft piston engines have not been cleaned up at all. In contrast, new auto engines are around 200x cleaner than before, making each piston aircraft a ‘gross polluter’ in comparison
 - 100LL is now actually on its way out, due to airborne lead near GA airports
 - Particulates, hydrocarbons, oxides of nitrogen, etc, must eventually be regulated
 - Studies show that electric power is cleaner than the best of today’s auto engines

- **Electric airplanes will immediately be lower carbon**
 - Because 2-3 times as efficient as ICE
 - Average U.S. electricity now higher CO2 per kWh than gasoline, but not for long
 - CA already twice as low
 - Many states have renewable portfolio standards – soon the U.S?
 - Plenty of electric capacity available
 - Hangars could be covered with solar panels
 - Low carbon biofuels will have limited availability for the foreseeable future

- **Reliability – potentially much higher, though not yet proven**
 - Potential to be safer than twins, which don’t actually have a better engine-out safety record than singles (due to loss of control from sudden off-axis thrust)
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

What minimum performance is needed for a practical electric airplane?

• My guesses as a GA pilot & former C-172 owner
 – For some, not all pilots
 – Not what’s competitive without fuel & environment considerations
 – Endurance bladder-limited to 3 hours anyway
 – Cruise speed and endurance rated at sea level (SL)
 • Endurance rated at the same cruise speed
 – Refueling will depend upon
 • As-yet-nonexistent charge stations, or
 • A high-power electrical outlet available via pre-arrangement
Recreational Flying

• **Local flying** – near C-150 or LSA performance
 – 1-2-place, 200 lb/person (200-400 lb) payload (no baggage)
 – 100 mph/87 kt cruise, 8k ft ceiling
 – 1.5 hours endurance at cruise + VFR reserve
 – Overnight refueling, except <1 hr for rentals

• **Day trips** – near C-172 or LSA performance
 – 2-4-place, 225 lb/person (450-900 lb) payload
 – 100+ kt cruise, 10k+ ceiling (12k+ in the West)
 – 2-3 hours endurance (230-345 mi) + VFR or IFR reserve
 – 4 hours maximum to refuel

• **Long distance cross-country flying** – C-172++
 – 2-4-place, 250 lb/person payload (500-1000 lb)
 – 100-200 kt cruise, 12k+ ceiling
 – 2.5-3 hours endurance (288-690 mi) + VFR or IFR reserve
 – 1 hour max to refuel (time for a meal)
• **Business Travel**
 – Single-person travel, a stop after each leg
 • Like recreational day trips, except
 • 1-place, 250-500 lb payload (may include equipment)
 • 1-2 hours maximum refuel time due to multiple legs
 • More speed is highly desirable, as time is money
 – **Carrying clients or associates, a stop after each leg**
 • Like single-person business, except
 • 3-4-place, 250 lb/person (750-1000 lb) payload
 – **Long distance cross-country flying**
 • Like recreational, except IFR reserve and 150+ kt cruise

• **Commuting**
 – 1-2-place, 225 lb/person payload (225-450 lb), 100-150 kt cruise
 – 2-2.5 hours (more is too long a commute) at cruise (230-375 mi) + IFR reserve
 – 6-8 hours to refuel during work
What can hybridizing an airplane accomplish?

- **Suggested/modeled hybrid**
 - Parallel, powered by the electric motor and/or the engine
 - Motor always turns, direct or via a PSRU
 - Engine, attached via a centrifugal clutch, can start & stop
 - Enough electric energy to climb to e.g. 10k ft
 - Ground (PHEV) charging enables some fuel displacement
 - A reversing propeller can capture energy during descents

- **Quiet airport operations**
 - Except when full power needed for short field or high altitude takeoffs

- **Smaller, lighter, efficient Diesel engine**
 - Sized only for cruise power (especially DeltaHawk)
 - Higher efficiency also means less weight for fuel

- **Some electric energy is always held in reserve for an emergency**
 - For long life, normal discharge is by only 80%
 - Fewer engine-failure-induced fatal crashes
 - Electric power is more reliable, and dual-power is more reliable yet
For both electric and hybrid, I started with the fastest 4-place piston kit airframes

- Kit airplanes get registered as amateur-built experimental
 - Modifiable and can be flown most anywhere
 - Must be efficient to be fast
 - Maximum L/D occurs at usefully fast speeds
 - 2 places and associated payload can be sacrificed for sufficient range with today’s batteries
 - As batteries improve, will the airframe remain near optimum for increasing either…
 - Cruise speed and range, or
 - Payload?

My modeling (live spreadsheet to follow)
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

A worksheet for possible electric aircraft to enter the NASA/CAFE high-efficiency 2-place airplane contest by Ronald Gremban, latest version, 4/24/2009.

Copyright 2008, 2009 by PerSites Corp. All rights reserved.

<table>
<thead>
<tr>
<th>Aircraft Characteristics</th>
<th>Velocity XL N/H</th>
<th>Velocity XL N/H S/C Electrical/RDF power</th>
<th>Longitudinal S/C Electrical/RDF power</th>
<th>Longitudinal S/C Electrical/RDF power + drag</th>
<th>Longitudinal S/C Electrical/RDF power + drag + lift</th>
<th>Longitudinal S/C Electrical/RDF power + drag + lift + roll</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
<th>Maneuverability</th>
<th>Maneuvers</th>
</tr>
</thead>
</table>

CalCars

THE CALIFORNIA CARS INITIATIVE

www.calscars.org