PHEVs: the Technical Side (Plug-in Hybrid Electric Vehicles)

Ronald Gremban, Technical Lead California Cars Initiative (www.CalCars.org)

Slides and notes posted at http://www.calcars.org/downloads

Introduction and outline

- Why PHEVs
 - A confluence of threats
 - Alternate energy sources are limited
 - Biofuels, other fossil fuels, H2
 - Electricity
 - Efficient, existing infrastructure, renewable potential, inexpensive, low emissions incl. CO2
 - BEVs are limited
 - PHEVs
 - Can provide 50-90% of BEV fuel displacement
 - Use existing technology
 - Can quickly become economically viable

CalCars THE CALIFORNIA CARS INITIATIVE

EET 2007 - Brussels, 30th May - 1st June 2007

Introduction and outline (con't)

- PHEVs
 - Pure EV range vs. blended
 - Batteries capabilities and risk
 - Auto manufacturers
 - Imaginary scenarios

ars

- What needs to happen
- CalCars' efforts, successes, and challenge
- Slides and notes posted at <u>http://www.calcars.org/downloads</u>

IFORNIA CARS INITIATIVE

NOTES: Introduction and outline

• Much of data is US-centric, even CA

– PHEVs effective in Europe++ too

- A rapidly-deployable partial solution to many immediate global challenges.
- Paper in EET-2007 proceedings
 - Far more detailed
 - Does not exactly follow these slides
- Slides and notes posted at http://www.calcars.org/downloads

Why PHEVs?

- A confluence of threats, all requiring rapid changes
 - Global warming
 - Petroleum shortages
 - Politics
- Ground transportation plays a major part in these threats, due to
 - CO2 emissions
 - Petroleum consumption

• A confluence of threats, all requiring rapid changes

- Global warming

- Without major decreases in worldwide greenhouse emissions within a decade, this may drastically change the face of the earth
- 80% worldwide emissions reductions cited as needed by 2050
- Emissions are instead growing by 3%/year vs. 1%/year in 1990

- Petroleum shortages

- Already global demand is within a few percent of global supply capacity
- Consumption in China and India is increasing rapidly
- Extraction has been far exceeding new discoveries for years
- Politics
 - Oil-using countries are becoming increasingly dependent on imports
 - Most comes from unstable middle-eastern dictatorships and theocracies

• Ground transportation plays a major part in these threats

– CO2 emissions:

- 30% worldwide
- 40% in the USA
- Up to 50% in California [check reference]
- U.S. petroleum
 - Ground transportation accounts for 2/3 of consumption
 - 2/3 is imported at great and increasing cost

Why PHEVs?

- Alternate energy sources are limited
 - Gasoline and Diesel are very dense but engine efficiencies are low
 - Tank-to-wheels efficiencies in average driving
 - Gasoline: 14% @ 9.2 l/100km => 1900 effective Wh/kg
 - Diesel: 18% @ 7.2 l/100km => 2400 effective Wh/kg
 - Strong HEV: 24% @ 5.4 l/100km => 3200 effective Wh/kg
 - 85% source-to-tank efficiency

Sars

THE CALIFORNIA CARS INITIATIVE

- Biofuels
 - Biodiesel can run in existing Diesel engines
 - Ethanol can run in flex-fuel gasoline engines
 - Current sources compete with forests and/or food production
 - Even with advanced sources, can get only 1/3 of U.S. transportation requirements from U.S. raw materials

EET - 2007 - Brussels, 30th May - 1st June 2007

Alternate transportation energy sources are limited

- Gasoline and Diesel are very dense storage media

- Current fuel-to-input-energy ratio is around 6.6:1 (85% source-to-tank efficiency)
- Both have around 13400 Wh/kg
- At the wheels, 13400 Wh could propel a car 107 km (67 mi) @ 8 km/kWh
- Average tank-to-wheels efficiencies of automotive engines in use
 - Gasoline: 14% @ 9.2 l/100km (26 mpg) => 1900 effective Wh/kg
 - Diesel: 18% @ 7.2 l/100km (33 mpg) => 2400 effective Wh/kg
 - Strong HEV: 24% @ 5.4 l/100km (44 mpg) => 3200 effective Wh/kg

- Biofuels

• Biodiesel can run in existing Diesel engines

- Mostly from oil-bearing crops
- Depolymerization can allow use of organic wastes
- Ethanol can run in flex-fuel gasoline engines
 - Around US\$150 extra during manufacture
 - From corn, the fuel-to-input-energy ratio is only around 1.4:1 (30% source-to-tank efficiency)
 - From cellulose is becoming viable
- Current sources compete with forests and/or food production
 - World corn prices have already risen from U.S. ethanol manufacture
- CA & US lab studies show, even with advanced sources, only enough potential raw material to satisfy 1/3 of U.S. transportation requirements

Why PHEVs?

- Alternate energy sources are limited (con't)
 - Other fossil fuels
 - Tar sands and coal
 - Natural gas
 - Hydrogen (H2)
 - Very hard to store, either as a gas, a liquid, or a compound
 - Currently usually made from natural gas
 - Can be from renewable sources, which generate electricity
 - Conversion via electrolysis, 50-67% efficient
 - Vehicle use is via
 - Fuel cell, approx. 40% efficient (20-27% electricity-towheels)
 - ICE, approx. 14% efficient (7-9% electricity-to-wheels)
 - \$1,000,000,000,000 in new U.S. infrastructure required

CalCars The california cars initiative

EET 2007 - Brussels, 30th May - 1st June 2007

• Alternate transportation energy sources are limited (con't)

Other fossil fuels

Tar sands and coal

- Very inefficient extraction and/or conversion processes
- Total CO2 emissions several times that of gasoline or Diesel

Natural gas

- Can be compressed or liquified each has limitations
- Can be burned in slightly modified ICEs (internal combustion engines)
- CO2 and criteria emissions are less than for petroleum

- Hydrogen (H2)

- Very hard to store, either as a gas, a liquid, or a compound
 - Leakage could itself become a major greenhouse gas contributor
- Currently usually made from natural gas
 - H2 fuel cell vehicles have lower mileage from natural gas than ICE vehicles running on natural gas
- Can be from renewable sources, which generate electricity
 - Conversion via electrolysis, 50-67% efficient
- Vehicle use is via
 - Fuel cell
 - » Approx. 40% efficient (20-27% electricity-to-wheels)
 - » Very expensive and short-lived despite billions spent in R&D over decades)

– ICE

- » Approx. 14% efficient (7-9% electricity-to-wheels)
- \$1,000,000,000 in new U.S. infrastructure required

Why PHEVs?

- Electricity
 - Has existing infrastructure with unused capacity
 - Is an efficient transport medium
 - Has renewable potential
 - Most renewable energy sources produce electricity
 - Is inexpensive
 - 1/4 to 1/8 the price of gasoline!
 - US\$2700-7000 saved over 100,000 km

• Electricity

- Has existing infrastructure with unused capacity
 - All developed countries have electricity distributed everywhere
 - · Nighttime use is typically less than half capacity

Is an efficient transport medium

- Most renewable energy sources already generate electricity
- Generation in fossil fuel plants is 35-60% efficient, and it may become economic to sequester the CO2 emissions
- A battery electric vehicle can present 70-80% of input electric energy at the vehicle's wheels
- In contrast, the 20-27% H2 fuel cycle from the same electricity has 1/3 to 1/4 the efficiency

- Has renewable potential

- Most renewable energy sources produce electricity
- Most charging is done at times of the day when windpower peaks
 - Vehicle charging can increase the windpower the grid can accept
 - Austin, TX, is promoting PHEVs so they can put up more wind turbines
- Is inexpensive US\$2700-7000 saved over 100,000 km of driving
 - CA: gasoline is ~\$3.50/gallon
 - \$0.044/km for a Prius; \$0.088/km for an average US passenger car
 - CA nighttime electricity is ~\$0.085/kWh
 - \$0.011/km at 8 km/kWh
 - » 1/4 gasoline for an HEV
 - » 1/8 gasoline for an ICE

Why PHEVs?

- Electricity is clean
 - CO2 (source-to-wheels emissions per km)
 - In U.S, already as low or lower than gasoline or Diesel
 - In California, much cleaner
 - Lower than EU's upcoming 130 g/km tank-to-wheel requirements
 - Renewable content increasing each year
 - Individuals can opt to consume only renewable energy
 - Criteria emissions
 - None from vehicles
 - Generation emissions capped in US
 - EVs are the only vehicles that get cleaner rather than dirtier as they age

- Electricity is clean
 - CO2 (source-to-wheels emissions per km)
 - In U.S, already as low or lower than gasoline or Diesel
 - In California, much cleaner
 - Lower than EU's upcoming 130 g/km tank-to-wheel requirements
 - Renewable content increasing each year
 - By law in many states incl. CA
 - EPRI projections: 40% CO2 reduction by 2050 w/o mandate
 - Individuals can opt to consume only renewable energy

Criteria emissions

- None from vehicles
- Generation emissions capped in US
- EVs are the only vehicles that get cleaner rather than dirtier as they age

EET-2007 - Brussels, 30th May - 1st June 2007

Why PHEVs?

- Source-to-wheels CO2 emissions for a Prius-sized passenger car
 - 216 gm/km, gasoline @ 9.2 l/100km (26 mpg)
 - 194 gm/km, Diesel @ 7.2 l/100km (33 mpg)
 - 127 gm/km, HEV @ 5.4 l/100km (44 mpg)

Cars

THE CALIFORNIA CARS INITIATIVE

- 167 Watt-hr/km, EV @ 16.7 kWh/100km (see table below)
- PHEV-20 (32 km EV range): 30% EV (much more when sold to those whose
- PHEV-60 (96 km EV range): 70% EV driving patterns best fit PHEV use)

Location	EV g/kWh	EV g/km	PHEV-20 (32 km)	PHEV-60 (96 km)	EV, % of gasoline	EV, % of Diesel	EV, % of HEV
California 2004	236	39	101	65	18%	20%	31%
U.S. 2004	615	103	120	110	48%	53%	81%
U.S. 2010	500	84	114	97	36%	43%	66%
U.S. 2050	375	63	108	82	29%	32%	50%

All emissions are below the EU's upcoming 130 g/km tank-to-wheels requirements

- Source-to-wheels CO2 emissions for a Prius-sized passenger car
 - 216 gm/km, gasoline @ 9.2 l/100km (26 mpg)
 - 194 gm/km, Diesel @ 7.2 l/100km (33 mpg)
 - 127 gm/km, HEV @ 5.4 l/100km (44 mpg)
 - 167 Watt-hr/km, EV @ 16.7 kWh/100km (see table below)
 - PHEV-20 (32 km EV range): 30% EV (much more when sold to those whose
 - PHEV-60 (96 km EV range): 70% EV driving patterns best fit PHEV use)

Location	EV g/kWh	EV g/km	PHEV-20 (32 km)	PHEV-60 (96 km)	EV, % of gasoline	EV, % of Diesel	EV, % of HEV
California 2004	236	39	101	65	18%	20%	31%
U.S. 2004	615	103	120	110	48%	53%	81%
U.S. 2010	500	84	114	97	36%	43%	66%
U.S. 2050	375	63	108	82	29%	32%	50%

All emissions are below the EU's upcoming 130 g/km tank-to-wheels requirements

Why PHEVs?

- Battery electric vehicles (BEVs or EVs)
 - Currently limited to specialized applications despite recent battery advances
 - Range is limited by weight and size
 - Batteries are expensive
 - Charging requirements are limiting

EET 2007 - Brussels, 30th May - 1st June 2007

• Battery electric vehicles (BEVs or EVs)

- Currently limited to specialized applications despite recent battery advances
- Range is limited by weight and size
 - Usually to 160 km or less
 - Tesla has 320 km, but at US\$100k for a small car
 - ~100 Wh/kg vs. 1900-3200 (plus tank & ICE) for petroleum
 - ~??? Wh/l vs. 1400-2400 for petroleum
 - US\$300-1000/kWh
- Batteries are expensive
 - US\$500/kWh => \$80/km of passenger car range
 - Cycle and calendar life may be shorter than vehicle life
- Charging requirements are limiting
 - Unusual high-power electric circuits (e.g. 240V @ 50A)
 - Multi-hour charge rates limit long-distance driving
 - Acceptance rate of most batteries is limited
 - Fast charging requires massive circuits and electronics
 - Petroleum is effectively dispensed at >1000 kW
 - » Range added at 133 km/minute
 - » Equivalent to 480V @ 2100A
 - In contrast, 240V @ 50A is 12 kW
 - » 1.2% as fast
 - » Range added at 1.6 km/min

PHEVs

- Are hybrids with a small extra fuel tank (the battery)
 - Used first
 - Refilled usually overnight from the electric grid
 - cheaper, cleaner, local fuel
- Can provide 30-70%+ of EV fuel displacement without the limitations
 - The average daily distance driven in the U.S. is 48 km
 - EPRI study: an electric range of 64 km can provide 50% of average daily driving from electricity
 - Liquid fuel requirements can be reduced by 50-80% from nonhybrids
 - Low enough to eventually be supplied completely by biofuels!
 - Overnight charging can be done from an ordinary household outlet
 - Fast charging is unnecessary
 - Overnight charging uses off-peak electricity

- Are hybrids with a small extra fuel tank (the battery)
 - Used first
 - Refilled usually overnight from the electric grid
 - cheaper, cleaner, local fuel
 - In the U.S, 30-100 km electric range is most effective
- Can provide 30-70%+ of EV fuel displacement without the limitations
 - The average daily distance driven in the U.S. is 48 km
 - EPRI study: an electric range of 64 km can provide 50% of average daily driving from electricity
 - PHEVs sold to customers with driving patterns best suited to PHEVs will see far higher average driving from electricity
 - Average daily distance is probably lower in the Europe, making PHEVs even more effective per EV range
 - When the battery is depleted, the vehicle merely becomes an efficient hybrid, burning liquid fuel
 - Liquid fuel requirements can be reduced by 50-80% from non-hybrids
 - Low enough to eventually be supplied completely by biofuels!
 - Overnight charging can be done from an ordinary household outlet
 - Fast charging is unnecessary
 - Overnight charging uses off-peak electricity

PHEVs

- Use existing technology
 - CalCars' demonstration of Prius PHEVs
 - Batteries are available now
 - Mass produced conversion kits
- Are economically viable

ars

THE CALIFORNIA CARS INITIATIVE

- Lowest lifetime cost once PHEV batteries are mass produced (EPRI study)
- V2G (Vehicle to grid): "Cash-back hybrids"
 - Can return grid energy from PHEVs
 - Can provide line regulation and even peaking services
 - Power companies are eager to pay US\$2000 or more per year
 - This can make PHEVs economically as well as environmentally compelling

EET - 2007 - Brussels, 30th May - 1st June 2007 www.calcars.org

- Use existing technology
 - CalCars first demonstrated turning mass-produced (Prius) hybrids into PHEVs
 - Significant oil displacement despite low tech batteries and lack of optimization
 - Batteries are available now that can do the job (more below)
 - Several companies are gearing up to mass produce conversions
- Are economically viable once PHEV batteries are produced in automotive quantities
 - Lowest lifetime cost once PHEV batteries are mass produced (EPRI study)
 - Li-ion laptop cells already sell for <US\$250/kWh
 - At US\$500/kWh, a 50 km, 8 kWh battery pack would cost US\$4000
 - US\$2500 over the estimated US\$1500 for a full hybrid's pack
 - Extra battery cost equals 100,000 km fuel savings vs. a hybrid
 - V2G (Vehicle to grid): "Cash-back hybrids"
 - Can return grid energy from PHEVs
 - Requires smart electric metering, not yet available
 - Can provide line regulation and even peaking services
 - Services that otherwise require expensive, inefficient, polluting spinning reserves and peaking plants
 - If this depletes the PHEV battery
 - » It merely becomes an ordinary hybrid
 - » An EV would strand its driver
 - Power companies are eager to pay US\$2000 or more per year
 - A V2G PHEV's regulation and peaking services are that valuable
 - This can make PHEVs economically as well as environmentally compelling
 - V2G increases the PHEV battery's cycle life requirements
 - » Batteries are available with sufficient cycle life
 - » US\$2000/year could more than buy a battery replacement if needed

PHEVs

- Batteries capabilities and risk
 - NiMH batteries, already used in hybrids, can power PHEVs with up to 30 km electric range
 - Li-ion batteries are ideal
 - High specific energy (80-120 Wh/kg) and energy density
 - Solutions exist for thermal runaway (fire) problems
 - Extensive battery management electronics is required
 - · Batteries that can do the job are now available
 - Sufficient lifetime claims, but too new to have a track record in vehicles
 - Even accelerated life testing takes a long time
 - Not yet in the volume of production to provide compelling pricing
 - Recycling is already standard

HE CALIFORNIA CARS INITIATIVE

ars

Less expensive future possibilities

• Batteries – capabilities and risk

- NiMH batteries, already used in hybrids, can power PHEVs with up to 30 km electric range
 - Proven reliable and long-lived in both EVs and hybrids
 - At 45 Wh/kg, would add e.g. 80 kg to a Prius
 - Would be lower power and cost per kWh than existing
 - At US\$600/kWh, \$1500-2000 over current battery
- Li-ion batteries are ideal
 - High specific energy (80-120 Wh/kg) and energy density
 - Solutions exist for thermal runaway (fire) problems
 - Phosphate or other non-runaway chemistry
 - » A123, Altairnano, Electrovaya, and Valence
 - » Potentially low cost, but high now due to low volume
 - Pack design with small cells and propagation avoidance
 - Extensive battery management electronics is required
 - Also potentially inexpensive in high volume production
 - Batteries that can do the job are now available
 - Sufficient lifetime claims, but too new to have a track record in vehicles
 - Even accelerated life testing takes a long time
 - Not yet in the volume of production to provide compelling pricing

Recycling is already standard

- Less expensive future possibilities
 - · Firefly lead-acid with graphite foam plates
 - Nickel-zinc
 - Zebra Sodium-sulfur (currently too low power)
 - EStor high-specific-energy ultracapacitors (very speculative)

EET-2007 - Brussels, 30th May - 1st June 2007

www.calcars.org

PHEVs

- Vs. auto manufacturers
 - In 2004, all manufacturers said
 - PHEVs are impractical

lars

THE CALIFORNIA CARS INITIATIVE

- No one will want to plug in a vehicle
- Today
 - All have PHEV development programs
 - Both Toyota and GM say they want to be the first to introduce a mass-produced PHEV
 - Daimler-Chrysler has a few prototype PHEV Sprinter vans in the field
 - Toyota's 2008 Prius is to have Li-ion batteries but not plug in
 - GM has two PHEVs in preparation
 - Ford has shown a concept prototype fuel cell PHEV SUV
 - All say that the batteries aren't ready, and refuse to commit to a timeline
 - None are willing to use already-proven NiMH
 - All have many-year, US\$100M+ technology and manufacturing requirements for battery qualification

- Vs. auto manufacturers
 - In 2004, all manufacturers said
 - PHEVs are impractical
 - No one will want to plug in a vehicle
 - Today
 - All have PHEV development programs
 - Both Toyota and GM say they want to be the first to introduce a mass-produced PHEV
 - Daimler-Chrysler has a few prototype PHEV Sprinter vans in the field
 - Will not commit to a production program
 - Toyota's 2008 Prius is to have Li-ion batteries but not plug in
 - Toyota wants experience with Li-ion hybrids before building a PHEV
 - Toyota is quoting Dr. Anderman of the Advanced Automotive Battery Consortium, saying that PHEV impact is at least a decade away
 - GM has two PHEVs in preparation
 - A PHEV version of its 2008 improved Saturn Vue hybrid
 - The innovative Chevy Volt, being production engineered
 - Two battery suppliers have been contracted to design PHEV packs
 - » A collaboration of A123 and Cobasys (an existing automotive supplier)
 - » A collaboration of Saft and Johnson Controls (an existing automotive supplier)
 - Ford has shown a concept prototype fuel cell PHEV SUV
 - All say that the batteries aren't ready, and refuse to commit to a timeline
 - None are willing to use already-proven NiMH
 - All have many-year, US\$100M+ technology and manufacturing requirements for battery qualification

PHEVs

- Imaginary scenarios
 - If all U.S. passenger cars and light trucks
 - Were suddenly strong hybrids
 - Oil consumption and CO2 could be reduced by up to 40%
 - Were suddenly PHEVs
 - Oil consumption could be reduced by an additional 50-70%, eliminating all petroleum imports
 - CO2 would also be further reduced by 50-70% times the proportion of the additional electricity requirements produced from renewable sources
 - Additional windpower, already competitive with fossil fuels, would be encouraged by a ready, intermittent-friendly demand
 - The fleet would be largely PHEVs within 10 years after most production becomes PHEVs

CalCars THE CALIFORNIA CARS INITIATIVE

EET 2007 - Brussels, 30th May - 1st June 2007

- Imaginary scenarios
 - If all U.S. passenger cars and light trucks
 - Were suddenly strong hybrids
 - Oil consumption and CO2 could be reduced by up to 40%
 - Were suddenly PHEVs
 - Oil consumption could be reduced by an additional 50-70%, eliminating all petroleum imports
 - CO2 would also be further reduced by 50-70% times the proportion of the additional electricity requirements produced from renewable sources
 - Additional windpower, already competitive with fossil fuels, would be encouraged by a ready, intermittent-friendly demand
 - The fleet would be largely PHEVs within 10 years after most production becomes PHEVs

PHEVs

- What needs to happen
 - **History: the Prius**
 - First sold in Japan in 1997
 - The third generation (2004+) was the first to sell in large quantities
 - After 10 years
 - 1+ million hybrids (all brands) have been sold worldwide
 - Around 1% penetration
 - We need demonstration/test fleets in customer hands immediately
 - If it takes 5 years to qualify batteries and bring out the first PHEV, it could take 15 years to reach 1% penetration far too slow to mitigate threats
 - Advantages of immediate demonstration fleets
 - Good-enough batteries are available now
 - First can be after-market conversion kits
 - Next can be conversions by Qualified Vehicle Modifiers (QVMs) working with manufacturers
 - Manufacturers can follow with PHEVs within 3-5 years from now
 - Already-developed emissions, economy, and battery testing standards and regulations •
 - Already-developed customer awareness and demand
 - Designs refined by data gathered from the demonstration and QVM fleets
 - Introductions into multiple vehicle lines at once

What needs to happen

- History: the Prius
 - First sold in Japan in 1997
 - The third generation (2004+) was the first to sell in large quantities
 - After 10 years
 - 1+ million hybrids (all brands) have been sold worldwide
 - Around 1% penetration
- We need demonstration/test fleets in customer hands immediately
 - If it takes 5 years to qualify batteries and bring out the first PHEV, it could take 15 years to reach 1% penetration
 - This is far too slow to mitigate global warming or fuel shortages
 - Advantages of immediate demonstration fleets
 - Increase public awareness and demand
 - Provide real-world battery and control scheme testing
 - Provide a ramp-up of demand for small manufacturers of new-technology batteries
 - A head start in developing emissions, economy, and battery testing standards
 - Good-enough batteries are available now
 - Insufficient pre-testing risks can be handled, by
 - » Early consumer (e.g. fleet owner) awareness and willingness
 - » Government incentives, credits, and demonstration-fleet-friendly regulations
 - » A third-party warranty provided, e.g. by a consortium of battery manufacturers, power companies (who could then use batteries too worn out for vehicles), government, and other interested parties
 - First can be after-market conversion kits
 - Hundreds to thousands
 - Not optimized, due to lack of knowledge of or ability to change OEM hybrid system
 - OEM warranty issues
 - Potential emissions and crash-worthiness issues
 - Next can be conversions by Qualified Vehicle Modifiers (QVMs) working with manufacturers
 - Thousands to tens of thousands
 - Optimized by engineering collaboration with the OEMs
 - Warranty, emissions, and crash-worthiness issues all handled

Manufacturers can follow with PHEVs within 3-5 years from now

- · Already-developed emissions, economy, and battery testing standards and regulations
- · Already-developed customer awareness and demand
- Designs refined by data gathered from the demonstration and QVM fleets
- Introductions into multiple vehicle lines at once

PHEVs

- CalCars' efforts, successes, and challenge
 - In 2004, CalCars did the first PHEV conversion of a massproduced hybrid (a 2004 Prius)
 - Several companies have since sprung up to do PHEV conversions
 - CalCars has created a do-it-yourself Prius conversion
 - Done twice in public, and filmed for a segment of PBS's Quest
 - Being documented at www.eaa-phev.org
 - Due partially to CalCars' efforts
 - Public awareness of PHEVs has soared, with extensive U.S. and worldwide media coverage
 - PHEVs are now being promoted by a whole range of organizations and governments
 - Several national laboratories Argonne, NREL, etc. have PHEV research programs
 - All auto manufacturers now have PHEV programs

- CalCars' efforts, successes, and challenge
 - In 2004, CalCars did the first PHEV conversion of a mass-produced hybrid (a 2004 Prius)
 - Several companies have since sprung up to do PHEV conversions
 - CalCars has created a do-it-yourself Prius conversion
 - Done twice in public, and filmed for a segment of PBS's Quest
 - Being documented at <u>www.eaa-phev.org</u>
 - Due partially to CalCars' efforts
 - Public awareness of PHEVs has soared, with extensive U.S. and worldwide media coverage
 - PHEVs are now being promoted by a whole range of organizations and governments
 - Plug-in Partners, including many cities and counties
 - Set America Free
 - Plug-in America
 - Some national evangelical groups
 - The California Air Resources Board, the Southern California Air Quality Management District, etc.
 - Even President Bush (CalCars' converted Prius appeared on the Whitehouse website)
 - Several national laboratories Argonne, NREL, etc. have PHEV research programs
 - All auto manufacturers now have PHEV programs

PHEVs

- CalCars' efforts, successes, and challenge (con't)
 - PHEVs will not help solve our environmental, energy supply, and political threats until a significant and growing proportion of vehicles are PHEVs
 - Despite all collective efforts
 - There are less than four dozen PHEVs in the world today
 - Not even conversions are being mass-produced
 - No auto manufacturer has committed to a PHEV introduction date
 - CalCars is still operating on a shoestring budget with a paid staff of two
 - We have our work cut out for us!

- CalCars' efforts, successes, and challenge (con't)
 - PHEVs will not help solve our environmental, energy supply, and political threats until a significant and growing proportion of vehicles are PHEVs
 - Despite all collective efforts
 - There are less than four dozen PHEVs in the world today
 - Not even conversions are being mass-produced
 - No auto manufacturer has committed to a PHEV introduction date
 - CalCars is still operating on a shoestring budget with a paid staff of two
 - We have our work cut out for us!