PHEVs: the Technical Side
(Plug-in Hybrid Electric Vehicles)

Ronald Gremban, Technical Lead
California Cars Initiative (www.CalCars.org)

Slides and notes posted at
http://www.calcars.org/downloads
Introduction and outline

- Why PHEVs
 - A confluence of threats
 - Alternate energy sources are limited
 - Biofuels, other fossil fuels, H2
 - Electricity
 - Efficient, existing infrastructure, renewable potential, inexpensive, low emissions incl. CO2
 - BEVs are limited
 - PHEVs
 - Can provide 50-90% of BEV fuel displacement
 - Use existing technology
 - Can quickly become economically viable
Introduction and outline (con’t)

• PHEVs
 – Pure EV range vs. blended
 – Batteries – capabilities and risk
 – Auto manufacturers
 – Imaginary scenarios
 – What needs to happen
 – CalCars’ efforts, successes, and challenge

• Slides and notes posted at http://www.calcars.org/downloads
NOTES: Introduction and outline

• Much of data is US-centric, even CA
 – PHEVs effective in Europe++ too
 – A rapidly-deployable partial solution to many immediate global challenges.

• Paper in EET-2007 proceedings
 – Far more detailed
 – Does not exactly follow these slides

• Slides and notes posted at http://www.calcars.org/downloads
Why PHEVs?

• A confluence of threats, all requiring rapid changes
 – Global warming
 – Petroleum shortages
 – Politics

• Ground transportation plays a major part in these threats, due to
 – CO2 emissions
 – Petroleum consumption
NOTES: Why PHEVs?

• A confluence of threats, all requiring rapid changes
 – Global warming
 • Without major decreases in worldwide greenhouse emissions within a decade, this may drastically change the face of the earth
 • 80% worldwide emissions reductions cited as needed by 2050
 • Emissions are instead growing by 3%/year vs. 1%/year in 1990
 – Petroleum shortages
 • Already global demand is within a few percent of global supply capacity
 • Consumption in China and India is increasing rapidly
 • Extraction has been far exceeding new discoveries for years
 – Politics
 • Oil-using countries are becoming increasingly dependent on imports
 • Most comes from unstable middle-eastern dictatorships and theocracies

• Ground transportation plays a major part in these threats
 – CO2 emissions:
 • 30% worldwide
 • 40% in the USA
 • Up to 50% in California [check reference]
 – U.S. petroleum
 • Ground transportation accounts for 2/3 of consumption
 • 2/3 is imported at great and increasing cost
Why PHEVs?

- Alternate energy sources are limited
 - Gasoline and Diesel are very dense but engine efficiencies are low
 - Tank-to-wheels efficiencies in average driving
 - Gasoline: 14% @ 9.2 l/100km => 1900 effective Wh/kg
 - Diesel: 18% @ 7.2 l/100km => 2400 effective Wh/kg
 - Strong HEV: 24% @ 5.4 l/100km => 3200 effective Wh/kg
 - 85% source-to-tank efficiency
 - Biofuels
 - Biodiesel can run in existing Diesel engines
 - Ethanol can run in flex-fuel gasoline engines
 - Current sources compete with forests and/or food production
 - Even with advanced sources, can get only 1/3 of U.S. transportation requirements from U.S. raw materials
NOTES: Why PHEVs?

• Alternate transportation energy sources are limited
 – Gasoline and Diesel are very dense storage media
 • Current fuel-to-input-energy ratio is around 6.6:1 (85% source-to-tank efficiency)
 • Both have around 13400 Wh/kg
 • At the wheels, 13400 Wh could propel a car 107 km (67 mi) @ 8 km/kWh
 • Average tank-to-wheels efficiencies of automotive engines in use
 – Gasoline: 14% @ 9.2 l/100km (26 mpg) => 1900 effective Wh/kg
 – Diesel: 18% @ 7.2 l/100km (33 mpg) => 2400 effective Wh/kg
 – Strong HEV: 24% @ 5.4 l/100km (44 mpg) => 3200 effective Wh/kg
 – Biofuels
 • Biodiesel can run in existing Diesel engines
 – Mostly from oil-bearing crops
 – Depolymerization can allow use of organic wastes
 • Ethanol can run in flex-fuel gasoline engines
 – Around US$150 extra during manufacture
 – From corn, the fuel-to-input-energy ratio is only around 1.4:1 (30% source-to-tank efficiency)
 – From cellulose is becoming viable
 • Current sources compete with forests and/or food production
 – World corn prices have already risen from U.S. ethanol manufacture
 • CA & US lab studies show, even with advanced sources, only enough potential raw material to satisfy 1/3 of U.S. transportation requirements
Why PHEVs?

- **Alternate energy sources are limited (con’t)**
 - Other fossil fuels
 - Tar sands and coal
 - Natural gas
 - Hydrogen (H2)
 - *Very* hard to store, either as a gas, a liquid, or a compound
 - Currently usually made from natural gas
 - Can be from renewable sources, which generate electricity
 - Conversion via electrolysis, 50-67% efficient
 - Vehicle use is via
 - Fuel cell, approx. 40% efficient (20-27% electricity-to-wheels)
 - ICE, approx. 14% efficient (7-9% electricity-to-wheels)
- $1,000,000,000,000 in new U.S. infrastructure required
NOTES: Why PHEVs?

- Alternate transportation energy sources are limited (con’t)
 - Other fossil fuels
 - Tar sands and coal
 - Very inefficient extraction and/or conversion processes
 - Total CO2 emissions several times that of gasoline or Diesel
 - Natural gas
 - Can be compressed or liquified – each has limitations
 - Can be burned in slightly modified ICEs (internal combustion engines)
 - CO2 and criteria emissions are less than for petroleum
 - Hydrogen (H2)
 - Very hard to store, either as a gas, a liquid, or a compound
 - Leakage could itself become a major greenhouse gas contributor
 - Currently usually made from natural gas
 - H2 fuel cell vehicles have lower mileage from natural gas than ICE vehicles running on natural gas
 - Can be from renewable sources, which generate electricity
 - Conversion via electrolysis, 50-67% efficient
 - Vehicle use is via
 - Fuel cell
 » Approx. 40% efficient (20-27% electricity-to-wheels)
 » Very expensive and short-lived despite billions spent in R&D over decades
 - ICE
 » Approx. 14% efficient (7-9% electricity-to-wheels)
 - $1,000,000,000,000 in new U.S. infrastructure required
Why PHEVs?

• **Electricity**
 – Has existing infrastructure with unused capacity
 – Is an efficient transport medium
 – Has renewable potential
 • Most renewable energy sources produce electricity
 – Is inexpensive
 • 1/4 to 1/8 the price of gasoline!
 • US$2700-7000 saved over 100,000 km
NOTES: Why PHEVs?

• **Electricity**
 - **Has existing infrastructure with unused capacity**
 - All developed countries have electricity distributed everywhere
 - Nighttime use is typically less than half capacity
 - **Is an efficient transport medium**
 - Most renewable energy sources already generate electricity
 - Generation in fossil fuel plants is 35-60% efficient, and it may become economic to sequester the CO2 emissions
 - A battery electric vehicle can present 70-80% of input electric energy at the vehicle’s wheels
 - In contrast, the 20-27% H2 fuel cycle from the same electricity has 1/3 to 1/4 the efficiency
 - **Has renewable potential**
 - Most renewable energy sources produce electricity
 - Most charging is done at times of the day when windpower peaks
 - Vehicle charging can increase the windpower the grid can accept
 - Austin, TX, is promoting PHEVs so they can put up more wind turbines
 - **Is inexpensive** – US$2700-7000 saved over 100,000 km of driving
 - CA: gasoline is ~$3.50/gallon
 - $0.044/km for a Prius; $0.088/km for an average US passenger car
 - CA nighttime electricity is ~$0.085/kWh
 - $0.011/km at 8 km/kWh
 » 1/4 gasoline for an HEV
 » 1/8 gasoline for an ICE
Why PHEVs?

• **Electricity is clean**
 – CO2 (source-to-wheels emissions per km)
 • In U.S, already as low or lower than gasoline or Diesel
 • In California, much cleaner
 • Lower than EU’s upcoming 130 g/km tank-to-wheel requirements
 • Renewable content increasing each year
 • Individuals can opt to consume only renewable energy
 – **Criteria emissions**
 • None from vehicles
 • Generation emissions capped in US
 – **EVs are the only vehicles that get cleaner rather than dirtier as they age**
NOTES: Why PHEVs?

• Electricity is clean
 – CO2 (source-to-wheels emissions per km)
 • In U.S, already as low or lower than gasoline or Diesel
 • In California, much cleaner
 • Lower than EU’s upcoming 130 g/km tank-to-wheel requirements
 • Renewable content increasing each year
 – By law in many states incl. CA
 – EPRI projections: 40% CO2 reduction by 2050 w/o mandate
 • Individuals can opt to consume only renewable energy
 – Criteria emissions
 • None from vehicles
 • Generation emissions capped in US
 – EVs are the only vehicles that get cleaner rather than dirtier as they age
Why PHEVs?

- **Source-to-wheels CO2 emissions for a Prius-sized passenger car**
 - 216 gm/km, gasoline @ 9.2 l/100km (26 mpg)
 - 194 gm/km, Diesel @ 7.2 l/100km (33 mpg)
 - 127 gm/km, HEV @ 5.4 l/100km (44 mpg)
 - 167 Watt-hr/km, EV @ 16.7 kWh/100km (see table below)
 - PHEV-20 (32 km EV range): 30% EV (much more when sold to those whose driving patterns best fit PHEV use)
 - PHEV-60 (96 km EV range): 70% EV

<table>
<thead>
<tr>
<th>Location</th>
<th>EV g/kWh</th>
<th>EV g/km</th>
<th>PHEV-20 (32 km)</th>
<th>PHEV-60 (96 km)</th>
<th>EV, % of gasoline</th>
<th>EV, % of Diesel</th>
<th>EV, % of HEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>California 2004</td>
<td>236</td>
<td>39</td>
<td>101</td>
<td>65</td>
<td>18%</td>
<td>20%</td>
<td>31%</td>
</tr>
<tr>
<td>U.S. 2004</td>
<td>615</td>
<td>103</td>
<td>120</td>
<td>110</td>
<td>48%</td>
<td>53%</td>
<td>81%</td>
</tr>
<tr>
<td>U.S. 2010</td>
<td>500</td>
<td>84</td>
<td>114</td>
<td>97</td>
<td>36%</td>
<td>43%</td>
<td>66%</td>
</tr>
<tr>
<td>U.S. 2050</td>
<td>375</td>
<td>63</td>
<td>108</td>
<td>82</td>
<td>29%</td>
<td>32%</td>
<td>50%</td>
</tr>
</tbody>
</table>

All emissions are below the EU’s upcoming 130 g/km *tank*-to-wheels requirements.
NOTES: Why PHEVs?

- Source-to-wheels CO2 emissions for a Prius-sized passenger car
 - 216 gm/km, gasoline @ 9.2 l/100km (26 mpg)
 - 194 gm/km, Diesel @ 7.2 l/100km (33 mpg)
 - 127 gm/km, HEV @ 5.4 l/100km (44 mpg)
 - 167 Watt-hr/km, EV @ 16.7 kWh/100km (see table below)
 - PHEV-20 (32 km EV range): 30% EV (much more when sold to those whose driving patterns best fit PHEV use)
 - PHEV-60 (96 km EV range): 70% EV

<table>
<thead>
<tr>
<th>Location</th>
<th>EV g/kWh</th>
<th>EV g/km</th>
<th>PHEV-20 (32 km)</th>
<th>PHEV-60 (96 km)</th>
<th>EV, % of gasoline</th>
<th>EV, % of Diesel</th>
<th>EV, % of HEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>California 2004</td>
<td>236</td>
<td>39</td>
<td>101</td>
<td>65</td>
<td>18%</td>
<td>20%</td>
<td>31%</td>
</tr>
<tr>
<td>U.S. 2004</td>
<td>615</td>
<td>103</td>
<td>120</td>
<td>110</td>
<td>48%</td>
<td>53%</td>
<td>81%</td>
</tr>
<tr>
<td>U.S. 2010</td>
<td>500</td>
<td>84</td>
<td>114</td>
<td>97</td>
<td>36%</td>
<td>43%</td>
<td>66%</td>
</tr>
<tr>
<td>U.S. 2050</td>
<td>375</td>
<td>63</td>
<td>108</td>
<td>82</td>
<td>29%</td>
<td>32%</td>
<td>50%</td>
</tr>
</tbody>
</table>

All emissions are below the EU’s upcoming 130 g/km tank-to-wheels requirements
Why PHEVs?

- Battery electric vehicles (BEVs or EVs)
 - Currently limited to specialized applications despite recent battery advances
 - Range is limited by weight and size
 - Batteries are expensive
 - Charging requirements are limiting
NOTES: Why PHEVs?

• Battery electric vehicles (BEVs or EVs)
 – Currently limited to specialized applications despite recent battery advances
 – Range is limited by weight and size
 • Usually to 160 km or less
 – Tesla has 320 km, but at US$100k for a small car
 • ~100 Wh/kg vs. 1900-3200 (plus tank & ICE) for petroleum
 • ~??? Wh/l vs. 1400-2400 for petroleum
 • US$300-1000/kWh
 – Batteries are expensive
 • US$500/kWh => $80/km of passenger car range
 • Cycle and calendar life may be shorter than vehicle life
 – Charging requirements are limiting
 • Unusual high-power electric circuits (e.g. 240V @ 50A)
 • Multi-hour charge rates limit long-distance driving
 – Acceptance rate of most batteries is limited
 – Fast charging requires massive circuits and electronics
 – Petroleum is effectively dispensed at >1000 kW
 » Range added at 133 km/minute
 » Equivalent to 480V @ 2100A
 – In contrast, 240V @ 50A is 12 kW
 » 1.2% as fast
 » Range added at 1.6 km/min
PHEVs: the Technical Side

PHEVs

- Are hybrids with a small extra fuel tank (the battery)
 - Used first
 - Refilled – usually overnight – from the electric grid
 - cheaper, cleaner, local fuel
- Can provide 30-70%+ of EV fuel displacement without the limitations
 - The average daily distance driven in the U.S. is 48 km
 - EPRI study: an electric range of 64 km can provide 50% of average daily driving from electricity
 - Liquid fuel requirements can be reduced by 50-80% from non-hybrids
 - Low enough to eventually be supplied completely by biofuels!
 - Overnight charging can be done from an ordinary household outlet
 - Fast charging is unnecessary
 - Overnight charging uses off-peak electricity
NOTES: PHEVs

• Are hybrids with a small extra fuel tank (the battery)
 – Used first
 – Refilled – usually overnight – from the electric grid
 • cheaper, cleaner, local fuel
 – In the U.S, 30-100 km electric range is most effective

• Can provide 30-70%+ of EV fuel displacement without the limitations
 – The average daily distance driven in the U.S. is 48 km
 • EPRI study: an electric range of 64 km can provide 50% of average daily driving from electricity
 – PHEVs sold to customers with driving patterns best suited to PHEVs will see far higher average driving from electricity
 • Average daily distance is probably lower in the Europe, making PHEVs even more effective per EV range
 – When the battery is depleted, the vehicle merely becomes an efficient hybrid, burning liquid fuel
 • Liquid fuel requirements can be reduced by 50-80% from non-hybrids
 – Low enough to eventually be supplied completely by biofuels!
 – Overnight charging can be done from an ordinary household outlet
 • Fast charging is unnecessary
 • Overnight charging uses off-peak electricity
PHEVs: the Technical Side

PHEVs

• Use existing technology
 – CalCars’ demonstration of Prius PHEVs
 – Batteries are available now
 – Mass produced conversion kits

• Are economically viable
 – Lowest lifetime cost once PHEV batteries are mass produced (EPRI study)
 – V2G (Vehicle to grid): “Cash-back hybrids”
 • Can return grid energy from PHEVs
 • Can provide line regulation and even peaking services
 • Power companies are eager to pay US$2000 or more per year
 • This can make PHEVs economically as well as environmentally compelling
NOTES: PHEVs

- **Use existing technology**
 - CalCars first demonstrated turning mass-produced (Prius) hybrids into PHEVs
 - Significant oil displacement despite low tech batteries and lack of optimization
 - **Batteries are available now that can do the job (more below)**
 - Several companies are gearing up to mass produce conversions
- **Are economically viable once PHEV batteries are produced in automotive quantities**
 - **Lowest lifetime cost once PHEV batteries are mass produced (EPRI study)**
 - Li-ion laptop cells already sell for <US$250/kWh
 - At US$500/kWh, a 50 km, 8 kWh battery pack would cost US$4000
 - US$2500 over the estimated US$1500 for a full hybrid’s pack
 - Extra battery cost equals 100,000 km fuel savings vs. a hybrid
 - **V2G (Vehicle to grid): “Cash-back hybrids”**
 - Can return grid energy from PHEVs
 - Requires smart electric metering, not yet available
 - **Can provide line regulation and even peaking services**
 - Services that otherwise require expensive, inefficient, polluting spinning reserves and peaking plants
 - If this depletes the PHEV battery
 - It merely becomes an ordinary hybrid
 - An EV would strand its driver
 - **Power companies are eager to pay US$2000 or more per year**
 - A V2G PHEV’s regulation and peaking services are that valuable
 - **This can make PHEVs economically as well as environmentally compelling**
 - V2G increases the PHEV battery’s cycle life requirements
 - Batteries are available with sufficient cycle life
 - US$2000/year could more than buy a battery replacement if needed
PHEVs: the Technical Side

PHEVs

• Batteries – capabilities and risk
 – NiMH batteries, already used in hybrids, can power PHEVs with up to 30 km electric range
 – Li-ion batteries are ideal
 • High specific energy (80-120 Wh/kg) and energy density
 • Solutions exist for thermal runaway (fire) problems
 • Extensive battery management electronics is required
 • Batteries that can do the job are now available
 – Sufficient lifetime claims, but too new to have a track record in vehicles
 – Even accelerated life testing takes a long time
 – Not yet in the volume of production to provide compelling pricing
 – Recycling is already standard
 – Less expensive future possibilities
NOTES: PHEVs

• Batteries – capabilities and risk
 – NiMH batteries, already used in hybrids, can power PHEVs with up to 30 km electric range
 • Proven reliable and long-lived in both EVs and hybrids
 • At 45 Wh/kg, would add e.g. 80 kg to a Prius
 – Would be lower power and cost per kWh than existing
 – At US$600/kWh, $1500-2000 over current battery
 – Li-ion batteries are ideal
 • High specific energy (80-120 Wh/kg) and energy density
 • Solutions exist for thermal runaway (fire) problems
 – Phosphate or other non-runaway chemistry
 » A123, Altairnano, Electrovaya, and Valence
 » Potentially low cost, but high now due to low volume
 – Pack design with small cells and propagation avoidance
 • Extensive battery management electronics is required
 – Also potentially inexpensive in high volume production
 • Batteries that can do the job are now available
 – Sufficient lifetime claims, but too new to have a track record in vehicles
 – Even accelerated life testing takes a long time
 – Not yet in the volume of production to provide compelling pricing
 – Recycling is already standard
 – Less expensive future possibilities
 • Firefly lead-acid with graphite foam plates
 • Nickel-zinc
 • Zebra Sodium-sulfur (currently too low power)
 • EStor high-specific-energy ultracapacitors (very speculative)
PHEVs: the Technical Side

PHEVs

• Vs. auto manufacturers
 – In 2004, all manufacturers said
 • PHEVs are impractical
 • No one will want to plug in a vehicle
 – Today
 • All have PHEV development programs
 • Both Toyota and GM say they want to be the first to introduce a mass-produced PHEV
 • Daimler-Chrysler has a few prototype PHEV Sprinter vans in the field
 • Toyota’s 2008 Prius is to have Li-ion batteries but not plug in
 • GM has two PHEVs in preparation
 • Ford has shown a concept prototype fuel cell PHEV SUV
 • All say that the batteries aren’t ready, and refuse to commit to a timeline
 – None are willing to use already-proven NiMH
 – All have many-year, US$100M+ technology and manufacturing requirements for battery qualification
NOTES: PHEVs

• Vs. auto manufacturers
 – In 2004, all manufacturers said
 • PHEVs are impractical
 • No one will want to plug in a vehicle
 – Today
 • All have PHEV development programs
 • Both Toyota and GM say they want to be the first to introduce a mass-produced PHEV
 • Daimler-Chrysler has a few prototype PHEV Sprinter vans in the field
 – Will not commit to a production program
 • Toyota’s 2008 Prius is to have Li-ion batteries but not plug in
 – Toyota wants experience with Li-ion hybrids before building a PHEV
 – Toyota is quoting Dr. Anderman of the Advanced Automotive Battery Consortium, saying that PHEV impact is at least a decade away
 • GM has two PHEVs in preparation
 – A PHEV version of its 2008 improved Saturn Vue hybrid
 – The innovative Chevy Volt, being production engineered
 – Two battery suppliers have been contracted to design PHEV packs
 » A collaboration of A123 and Cobasys (an existing automotive supplier)
 » A collaboration of Saft and Johnson Controls (an existing automotive supplier)
 • Ford has shown a concept prototype fuel cell PHEV SUV
 • All say that the batteries aren’t ready, and refuse to commit to a timeline
 – None are willing to use already-proven NiMH
 – All have many-year, US$100M+ technology and manufacturing requirements for battery qualification
PHEVs

- Imaginary scenarios
 - If all U.S. passenger cars and light trucks
 - Were suddenly strong hybrids
 - Oil consumption and CO2 could be reduced by up to 40%
 - Were suddenly PHEVs
 - Oil consumption could be reduced by an additional 50-70%, eliminating all petroleum imports
 - CO2 would also be further reduced by 50-70% times the proportion of the additional electricity requirements produced from renewable sources
 - Additional windpower, already competitive with fossil fuels, would be encouraged by a ready, intermittent-friendly demand
 - The fleet would be largely PHEVs within 10 years after most production becomes PHEVs
NOTES: PHEVs

• Imaginary scenarios
 – If all U.S. passenger cars and light trucks
 • Were suddenly strong hybrids
 – Oil consumption and CO2 could be reduced by up to 40%
 • Were suddenly PHEVs
 – Oil consumption could be reduced by an additional 50-70%, eliminating all petroleum imports
 – CO2 would also be further reduced by 50-70% times the proportion of the additional electricity requirements produced from renewable sources
 – Additional windpower, already competitive with fossil fuels, would be encouraged by a ready, intermittent-friendly demand
 – The fleet would be largely PHEVs within 10 years after most production becomes PHEVs
PHEVs: the Technical Side

PHEVs

• What needs to happen
 – History: the Prius
 • First sold in Japan in 1997
 • The third generation (2004+) was the first to sell in large quantities
 • After 10 years
 – 1+ million hybrids (all brands) have been sold worldwide
 – Around 1% penetration
 – We need demonstration/test fleets in customer hands immediately
 • If it takes 5 years to qualify batteries and bring out the first PHEV, it could take 15 years to reach 1% penetration – far too slow to mitigate threats
 • Advantages of immediate demonstration fleets
 • Good-enough batteries are available now
 • First can be after-market conversion kits
 • Next can be conversions by Qualified Vehicle Modifiers (QVMs) working with manufacturers
 – Manufacturers can follow with PHEVs within 3-5 years from now
 • Already-developed emissions, economy, and battery testing standards and regulations
 • Already-developed customer awareness and demand
 • Designs refined by data gathered from the demonstration and QVM fleets
 • Introductions into multiple vehicle lines at once
NOVES: PHEVs

- **What needs to happen**
 - **History: the Prius**
 - First sold in Japan in 1997
 - The third generation (2004+) was the first to sell in large quantities
 - After 10 years
 - 1+ million hybrids (all brands) have been sold worldwide
 - Around 1% penetration
 - **We need demonstration/test fleets in customer hands immediately**
 - If it takes 5 years to qualify batteries and bring out the first PHEV, it could take 15 years to reach 1% penetration
 - This is far too slow to mitigate global warming or fuel shortages
 - **Advantages of immediate demonstration fleets**
 - Increase public awareness and demand
 - Provide real-world battery and control scheme testing
 - Provide a ramp-up of demand for small manufacturers of new-technology batteries
 - A head start in developing emissions, economy, and battery testing standards
 - **Good-enough batteries are available now**
 - Insufficient pre-testing risks can be handled, by
 - Early consumer (e.g. fleet owner) awareness and willingness
 - Government incentives, credits, and demonstration-fleet-friendly regulations
 - A third-party warranty provided, e.g. by a consortium of battery manufacturers, power companies (who could then use batteries too worn out for vehicles), government, and other interested parties
 - **First can be after-market conversion kits**
 - Hundreds to thousands
 - Not optimized, due to lack of knowledge of or ability to change OEM hybrid system
 - OEM warranty issues
 - Potential emissions and crash-worthiness issues
 - **Next can be conversions by Qualified Vehicle Modifiers (QVMs) working with manufacturers**
 - Thousands to tens of thousands
 - Optimized by engineering collaboration with the OEMs
 - Warranty, emissions, and crash-worthiness issues all handled
 - **Manufacturers can follow with PHEVs within 3-5 years from now**
 - Already-developed emissions, economy, and battery testing standards and regulations
 - Already-developed customer awareness and demand
 - Designs refined by data gathered from the demonstration and QVM fleets
 - Introductions into multiple vehicle lines at once
PHEVs

- CalCars’ efforts, successes, and challenge
 - In 2004, CalCars did the first PHEV conversion of a mass-produced hybrid (a 2004 Prius)
 - Several companies have since sprung up to do PHEV conversions
 - CalCars has created a do-it-yourself Prius conversion
 - Done twice in public, and filmed for a segment of PBS’s Quest
 - Being documented at www.eaa-phev.org
 - Due partially to CalCars’ efforts
 - Public awareness of PHEVs has soared, with extensive U.S. and worldwide media coverage
 - PHEVs are now being promoted by a whole range of organizations and governments
 - Several national laboratories – Argonne, NREL, etc. – have PHEV research programs
 - All auto manufacturers now have PHEV programs
NOTES: PHEVs

- CalCars’ efforts, successes, and challenge
 - In 2004, CalCars did the first PHEV conversion of a mass-produced hybrid (a 2004 Prius)
 - Several companies have since sprung up to do PHEV conversions
 - CalCars has created a do-it-yourself Prius conversion
 - Done twice in public, and filmed for a segment of PBS’s Quest
 - Being documented at www.eaa-phev.org
 - Due partially to CalCars’ efforts
 - Public awareness of PHEVs has soared, with extensive U.S. and worldwide media coverage
 - PHEVs are now being promoted by a whole range of organizations and governments
 - Plug-in Partners, including many cities and counties
 - Set America Free
 - Plug-in America
 - Some national evangelical groups
 - The California Air Resources Board, the Southern California Air Quality Management District, etc.
 - Even President Bush (CalCars’ converted Prius appeared on the Whitehouse website)
 - Several national laboratories – Argonne, NREL, etc. – have PHEV research programs
 - All auto manufacturers now have PHEV programs
PHEVs: the Technical Side

PHEVs

• CalCars’ efforts, successes, and challenge (con’t)
 – PHEVs will not help solve our environmental, energy supply, and political threats until a significant and growing proportion of vehicles are PHEVs
 • Despite all collective efforts
 – There are less than four dozen PHEVs in the world today
 – Not even conversions are being mass-produced
 – No auto manufacturer has committed to a PHEV introduction date
 – CalCars is still operating on a shoestring budget with a paid staff of two
 – We have our work cut out for us!
NOTES: PHEVs

• CalCars’ efforts, successes, and challenge (con’t)
 – PHEVs will not help solve our environmental, energy supply, and political threats until a significant and growing proportion of vehicles are PHEVs
 • Despite all collective efforts
 – There are less than four dozen PHEVs in the world today
 – Not even conversions are being mass-produced
 – No auto manufacturer has committed to a PHEV introduction date
 – CalCars is still operating on a shoestring budget with a paid staff of two
 – We have our work cut out for us!